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Abstract. We study general energy level spacing distributions of Hamiltonian systems in the
transition region between regularity and chaos. The well known Brody distribution, which
results from a power-law ansatz for the level-repulsion function, describes the nearest-neighbour
spectral spacings. We pursue an analogous ansatz to determine the level spacing distributions of
thekth neighbours, which describe level correlations on longer ranges. The new formula is tested
by way of example of the numerical spectra of two different classically chaotic Hamiltonian
systems, namely the hydrogen atom in a magnetic field and the Hénon–Heiles system.

1. Introduction

The nearest-neighbour spacing distributionP(x) plays a prominent role in the quantum
description of classically chaotic quantum systems (see, e.g. Haake 1991). If the phase
space is totallychaotic, the distribution of the high-lying energy level spacings is Wigner-
like,

P(x) = π

2
x exp

(
−π

4
x2
)
. (1)

In contrast, in most classicallyregular quantum systems the levels are independent of each
other, and therefore the spacings are distributed according to the (zeroth-order) Poisson
formula,

P(x) = exp(−x). (2)

Brody (1973) proposed a simple one-parameter distribution to describe the level spacings
of systems whose phase space dynamics is of a mixed type,

Pbro(q, x) = α(q + 1)xq exp(−αxq+1) α =
[
0

(
q + 2

q + 1

)]q+1

. (3)

In the special caseq = 0, the Brody formula (3) turns into the Poisson distribution
(regular phase space), and forq = 1 the Brody distribution yields the Wigner distribution
(chaotic phase space). A value ofq between 0 and 1 in many cases gives an indication
of the degree of chaoticity of the classical system. In particular, an increase ofq may
be an indicator of the increase in the ratio of the chaotic phase-space volume to the
total kinematically accessible phase-space volume of the corresponding classical system.
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Nevertheless, the semiclassical interpretation ofq is still open. Localization effects of
chaotic eigenfunctions and the value of the effective Planck constant (¯heff) can influence the
Brody parameter (Prosen and Robnik 1994).

Although equation (3) still lacks a physical derivation from first principles it can
be derived from a power-law ansatz for the level-repulsion function. It is generally
accepted that the Brody distribution is a good approximation for high-energy spectra of
mixed systems. In Prosen (1995) and Prosen and Robnik (1994) it is argued that the
Brody distribution only describes the so-called ‘near-semiclassical regime’, whereas the
so-called ‘far-semiclassical regime’ of extremely high-lying energy levels is captured by
the semiclassical Berry–Robnik distribution (Berry and Robnik 1984). Here we are only
interested in the ‘near-semiclassical regime’, where nonuniform localization of phase-space
eigenstates on classically chaotic regions plays an important role (Prosen and Robnik 1994).

In this paper we look for a way of deriving higher-order spacing distributionsPk(x) from
a similar Brody-like ansatz. The termPk(x) dx represents the probability that an interval of
lengthx which starts at a level contains exactlyk levels and the next ((k+ 1)th) level is in
[x, x+dx]. In this notation the nearest-neighbour spacing distribution is denoted byP0(x).
There are two main questions: Is it possible to derive a higher-order spacing distribution
from a Brody-like power-law ansatz for the level-repulsion function? And what are the
exponents in the different orders of level statistics? For a regular phase space dynamics the
levels are totally uncorrelated. Therefore the level spacings are distributed according to the
Poisson formula,

Pk(x) = 1

k!
xk exp(−x). (4)

In section 2 we will derive the general form of higher-order spacing distributions by solving
an integral equation forPk(x), which depends on the level-repulsion function only. As a
special case we will propose a spacing distribution which corresponds to a power-law
level-repulsion function. In section 3 we will compare our proposed distribution with
the numerical data of two Hamiltonian systems: the hydrogen atom in a magnetic field
and the H́enon–Heiles system. Both systems are classically chaotic and possess wide
transition regions between integrability and chaos. The numerical spectra were obtained
by diagonalizing the Hamiltonians at constant scaled energyε. Under this condition each
spectrum corresponds to a specific chaoticity of the underlying classical dynamics.

2. Level spacing distribution

2.1. Nearest-neighbour spacing distribution

We will assume that the nearest-neighbour spacing distributionP(x) = P0(x) is a
normalized probability density with unit expectation value. The latter assumption is
necessary for an adequate description of globally homogenous (i.e. unfolded) spectra with
unit mean spacing,∫ ∞

0
P(x) dx = 1

∫ ∞
0
xP (x) dx = 〈x〉 = 1. (5)

Let F(x) be the probability that an interval of lengthx which starts at a level contains no
level. This function results from the corresponding probability densityP(x) by integrating
over all cases in which the nearest-neighbour level is in the interval [x,∞]. ThereforeF(x)
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is given by

F(x) =
∫ ∞
x

P (y) dy. (6)

In this paper the level-repulsion functionr(x) plays an important role. It is defined by the
ratio

r(x) = P(x)

F (x)
. (7)

The expressionr(x) dx is the probability that an interval [0, x] which starts at a level is
limited by a level on its right side (i.e. there is a level in ]x, x+dx]) under the conditionthat
there are no other levels in the interval ]0, x[ (Bohigas and Giannoni 1984, p 16). Using
the language of probability theory (see, e.g. Breiman 1969) we can say thatr(x) dx is a
conditional probability, i.e. the ratio of the joint probabilityP(x) dx to F(x). The function
F(x) represents the probability of the condition, i.e. the emptiness of the interval ]0, x[.
Because of this probability interpretation the level-repulsion function is sometimes called
‘conditional probability density’. It must be stressed, however, thatr(x) is not a probability
density. Rearranging definition (7) we arrive at an integral equation forP(x),

P(x) = r(x)F (x) = r(x)
∫ ∞
x

P (y) dy (8)

which can be transformed into a first-order linear differential equation by a simple
differentiation,

P ′(x) =
[
r ′(x)
r(x)

− r(x)
]
P(x). (9)

The formal solution of (9) reads

P(x) = r(x) exp

[
−
∫ x

0
r(y) dy

]
. (10)

Thus, given a special level-repulsion function we can compute the nearest-neighbour
spacing distribution from equation (9). The normalized solution of (9) takes the form of the
well known Brody distribution if the level-repulsion function is assumed to be of power-law
type and the mean spacing is constrained to unity. In explicit terms:

r(x) ∝ xq and 〈x〉 = 1⇒ P(x) = Pbro(q, x). (11)

2.2. Higher-order spacing distributions

In order to study thekth-order spacing distribution, we generalize the equations for the
nearest-neighbour statistics (k = 0) to neighbours of higher orders (k > 1). The conditions
of normalization and unit mean spacing now read∫ ∞

0
Pk(x) dx = 1

∫ ∞
0
xPk(x) dx = 〈x〉k = k + 1. (12)

The expressions for thekth-order level-repulsion functionrk(x) and the special function
Fk(x) are given by

Fk(x) =
∫ ∞
x

[
Pk(y)− Pk−1(y)

]
dy (13)

rk(x) = Pk(x)

Fk(x)
. (14)
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The functionFk(x) represents the probability that an interval of lengthx, which starts at a
level, containsk levels. This probability is computed in equation (13) by integrating over
all cases in which the(k+1)th level is in the interval [x,∞]. Equation (14) is thekth-order
version of equation (7). The conditional probabilityrk(x) dx is defined as the probability
that an interval [0, x] which starts at a level (atx = 0) is limited by a level on its right side
(i.e. there is a level in ]x, x+ dx]) under the conditionthat there are exactlyk levels in the
interval ]0, x[. The joint probabilityPk(x) dx is defined analogously. To derive the general
integral equation for the spacing distribution we note that∫ ∞

x

Pk(y) dy =
k∑

j=0

Fj (x) =
k∑

j=0

Pj (x)

rj (x)
. (15)

By differentiation we arrive at an inhomogenous linear differential equation for thekth-order
spacing distribution, in which the inhomogenous term includes the solution for the(k−1)th
order,

P ′k(x) =
[
r ′k(x)
rk(x)

− rk(x)
]
Pk(x)+ rk(x)Pk−1(x). (16)

The zeroth-order equation is identical to equation (9) for the nearest-neighbour spacing
distribution. The system of differential equations is coupled through the inhomogenous
term, which includes the solution of the previous order. The general normalized solution
of equation (16) can formally be written as

Rk(x) :=
∫ x

0
rk(y) dy (17)

P0(x) = r0(x) exp[−R0(x)] (18)

Pk(x) = rk(x) exp[−Rk(x)]
∫ x

0
Pk−1(y) exp[−Rk(y)] dy. (19)

Here, the integral of the level-repulsion function is denoted byRk(x) for brevity. With
the help of equation (19) it is possible to calculatePk(x), provided that thekth-order
level-repulsion functionrk(x) is known. The latter function contains all the information
which is necessary to calculate the former distribution. The conditional probabilityrk(x) dx
corresponds to the joint probabilityPk(x) dx as explained before.

In this paper we propose a (Brody-like) power-law ansatz for thekth-order level-
repulsion function,

rk(x) = ρk(ρkx)qk . (20)

The level-repulsion exponentqk is a free parameter. It determines the level repulsion of
the kth-order spacings. Fork = 0 it is the parameterq = q0 of the Brody distribution (3).
To ensure unit mean spacing,〈x〉k = k + 1, we have to adjust the constantsρk. Choosing
the power-law form (20) for the level-repulsion function we arrive at a special family of
spacing distributionsPk(x) =: Qk(x), which is a generalization of the Brody distribution
(3) to level spacings of higher orders, namely

Q0(x) = ρ0(ρ0x)
q0 exp

[
− 1

q0+ 1
(ρ0x)

q0+1

]
(21)

Qk(x) = ρk(ρkx)qk exp

[
− 1

qk + 1
(ρkx)

qk+1

] ∫ x

0
Qk−1(y) exp

[
1

qk + 1
(ρky)

qk+1

]
dy.

(22)

In the following section we will fit the level spacing distributionsQk(x) to numerical spectra
of mixed chaotic systems by adjusting the level repulsion exponentsqk.
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3. Comparison with numerical spectra

3.1. Hydrogen atom in a magnetic field

The nonrelativistic hydrogen atom in a magnetic field in cylindrical coordinates (see
Hasegawaet al 1989 or Friedrich and Wintgen 1989) is described by the Hamiltionan

H(pρ, pz, lz, ρ, z, γ ) = 1

2

(
p2
ρ + p2

z +
l2z

ρ2

)
− 1√

ρ2+ z2
+ 1

8
γ 2ρ2+ 1

2
γ lz. (23)

The Hamiltonian is nonseparable in two degrees of freedom. The remaining symmetries are
the rotational symmetry around the direction of the magnetic field (z-axis) and the reflection
at thexy-plane. These symmetries can be expressed by the azimuthal quantum numberm

and thez-parity π .
The field strength parameterγ is physically defined by

γ = B

B0
B0 = h̄

ea2
0

a0 = 4πε0h̄
2

e2me
. (24)

The Hamiltonian (23) possesses a scaling property. It is invariant under the following
transformation:

(ρ̃, z̃) = γ 2
3 (ρ, z) (p̃ρ, p̃z) = γ− 1

3 (pρ, pz) l̃z = γ 1
3 lz ε = γ− 2

3E. (25)

The scaled HamiltonianH̃ does not include the scaling parameter explicitly, which can
formally be expressed by

H̃ (p̃ρ, p̃z, l̃z, ρ̃, z̃, 1) = γ− 2
3H(pρ, pz, lz, ρ, z, γ ). (26)

The classical phase-space dynamics is essentially determined by the choice of the value of
the scaled energyε. By diagonalizing the scaled Hamiltonian at constant scaled energy we
obtain a quantum spectrum which corresponds to a fixed type of phase-space dynamics.

For completeness we provide some details on our data analysis: For the Hilbert subspace
with mπ = 0+ we computed 9749 eigenvalues atε = −0.1 and 16 223 eigenvalues at
ε = −0.35. For ε = −0.1 the classical system is almost completely chaotic. At lower
energies some of the trajectories become regular and the phase-space dynamics is of a
mixed type, i.e. regular and chaotic trajectories coexist.

From Poincaŕe surfaces of section we can estimate that forε = −0.35 a fraction
of approximately 15% of the classical phase space is regular (Hasegawaet al 1989).
We have tested our spacing distributionsQk(x) for some lower ordersk = 0, . . . ,7 at
these completely different values of the scaled energy. To separate the local properties of
the system from the global ones, we unfold the spectrum. As a second step the lower
(nonsemiclassical) part of each spectral series is cut off. To enter the semiclassical region
(i.e. h̄eff → 0) we disregard the lower 5749 eigenvalues of the spectrum atε = −0.1 and
the lower 6223 eigenvalues of the spectrum atε = −0.35. For the resulting spectra we
compute the neighbour spacing distributions fork = 0, . . . ,7, which should reveal universal
characteristics of chaotic quantum systems. To compare the numerical spacing distributions
with our theory the free exponentsqk should be adjusted as best-fit parameters. We use
a least-squares approximation for the cumulative spacing distribution

∫ x
0 Qk(y) dy. The

resulting fits for the three lowest orders are plotted in figure 1. As expected, the nearest-
neighbour spacings of the chaotic spectrum (ε = −0.1) are distributed according to the
Wigner distribution:q0 ≈ 1. For the case of a mixed phase space (ε = −0.35), the zeroth-
order distribution reveals the tendency to a more Poisson-like behaviour. The corresponding
histogram is a mixture of a Poisson-like and Wigner-like distribution.
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Figure 1. The spacing distributionsQk(x) of the hydrogen atom in a magnetic field at two
different values of the scaled energyε. The best-fit level repulsion exponents forε = −0.35
are: (a) q0 = 0.27, (b) q1 = 0.47, (c) q2 = 0.63. For ε = −0.1 the best-fit exponents are:
(d) q0 = 0.97, (e) q1 = 1.74, (f ) q2 = 2.49. Obviously the histograms are well fitted by the
theoretical spacing distributions.

In figure 2 the level repulsion exponents for the lowest eight ordersk = 0, . . . ,7 are
plotted. Apart from minor deviations the exponentsqk increase linearly with increasing
orderk. For ε = −0.1 the growth rate is higher than forε = −0.35. As will be seen below
again, this is a typical feature of level repulsion in mixed systems. We assume that the rate
of increase ofqk is a measure of spectral chaoticity, i.e. of the chaoticity of the underlying
phase-space dynamics. Completely regular spectra are characterized by a vanishing rate of
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Figure 2. The level repulsion exponents of the hydrogen atom in a magnetic field for two
different values of the scaled energy (ε = −0.10 andε = −0.35). The low-order exponents
(k 6 5) lie approximately on a straight line. The higher-order exponents (k > 5) deviate from
this straight line behaviour.

increase. The corresponding Poisson distribution is determined byqk = 0, which means
that the level-repulsion functions are constant:rk(x) = x0 = 1. To check the goodness (in
the statistical sense of the word) of our least-squares fits and the reliability of the estimated
exponentsqk we perfomed aχ2 test with 15 degrees of freedom. The energy level spacings
were distributed over 16 classes with approximately the same number of spacings in each
class. A fit is acceptable at the 5% confidence level ifχ2 6 25. For ε = −0.1 all fits
(k = 0, . . . ,7) are significant. The deviations ofq6 and q7 are found to be systematic in
the following sense: if we choose a different value lying on the straight line, the fits of
Q6(x) andQ7(x) would become nonsignificant. The goodness of the least-squares fits for
ε = −0.35 is slightly worse: theχ2 values range between 31 and 75. Nevertheless, the
histograms are reasonably well fitted byQk(x), as can be seen in figure 1. To confirm our
assumptions in section 3.2 we will study a completely different Hamiltonian system with
mixed chaotic dynamics, namely the Hénon–Heiles system.

3.2. Hénon–Heiles system

This system also possesses a large transition region between regularity and chaos (see, e.g.
Lichtenberg and Lieberman 1983). Instead of the original Hamiltonian (Hénon and Heiles
1964) we use a modified form which includes the scaling parameterγ , namely

H(px, py, x, y, γ ) = 1
2(p

2
x + p2

y)+ 1
2(x

2+ y2)+ γ (x2y − 1
3y

3). (27)

The H́enon–Heiles potential has aC3v symmetry. Because of this symmetry the Hilbert
space consists of three invariant subspacesA1, A2 andE (see, e.g. Jones 1990). The scaling
transformations for the modified Hénon–Heiles Hamiltonian read

(x̃, ỹ) = γ (x, y) (p̃x, p̃y) = γ 2(px, py) ε = γ 2E. (28)
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It follows that the scaled H́enon–Heiles HamiltonianH̃ is formally independent of the
scaling parameterγ , i.e.

H̃ (p̃x, p̃y, x̃, ỹ, 1) = γ 2H(px, py, x, y, γ ). (29)

The scaled energy determines the degree of chaoticity of the underlying classical dynamics.
Increasing the scaled energy fromε = 1

12 ≈ 0.108 up toε = 1
6 ≈ 0.166 the phase-space

undergoes a transition from regularity to chaos. We diagonalize the Hamiltonian (27) at
constant scaled energy for a special invariant subspace.

We computed 6062 (5931) eigenvalues in the subspaceA1 (A2) at ε = 0.108, 4962
(5084) eigenvalues atε = 0.133 and 2941 (2991) eigenvalues atε = 0.166. After unfolding
the spectra we cut off the low-lying levels: forε = 0.108 andε = 0.133 we only consider the
highest 4000 eigenvalues of the spectra and forε = 0.166 only the upper 2000 eigenvalues.
From these spectra we computed the cumulative spacing distributions of some ordersk 6 7
for each value of the scaled energy and for the two subspacesA1 andA2. To improve the
statistics we mixed the spacings ofA1 andA2.

From Poincaŕe surfaces of section the phase-space structure of the Hénon–Heiles system
can roughly be estimated (Hénon and Heiles 1964). Forε = 0.108≈ 1

12 the phase space
is almost completely regular, forε = 0.133 nearly a fraction of 50% of the phase space
is chaotic and forε = 0.166≈ 1

6 almost the whole classical phase space is chaotic. The
best-fit values of the level repulsion exponents for three different types of classical dynamics
ε = 0.108, ε = 0.133 andε = 0.166 are shown in figure 3. It is seen that the low-order
exponents increase linearly. It is a surprising fact that we can reproduce the level spacing
distributions of as much as eight orders with a simple power-law ansatz for the level-
repulsion function. The good agreement is also evident from figure 4, where histograms
and the corresponding best-fit distributions are plotted for comparison. We performed a
χ2 test in the same way as for the hydrogen atom in a magnetic field. Again the fits for
the highest scaled energyε = 0.166 are significant at the 5% confidence level: theχ2

values range between 6 fork = 3 and 24 fork = 6. Only the fit for k = 7 lies on the

Figure 3. The level repulsion exponents of the Hénon–Heiles system for three different values
of the scaled energy (ε = 0.108,ε = 0.133 andε = 0.166). The low-order exponents (smallk)
increase linearly wherea s the higher-order exponents show minor deviations froms the straight
line behaviour.
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Figure 4. The spacing distributionsQk(x) of the H́enon–Heiles system at two different values
of the scaled energyε. The best-fit level repulsion exponents forε = 0.108 are: (a) q0 = 0.10,
(b) q1 = 0.18, (c) q2 = 0.24. For ε = 0.166 the best-fit exponents are: (d) q0 = 0.75, (e)
q1 = 1.16, (f ) q2 = 1.58. There is an excellent agreement between the proposed distributions
Qk(x) and the numerical histograms.

edge of significance:χ2 = 28. For ε = 0.108 and forε = 0.133 some higher-order fits
are significant and some are not. The lower five ordersk = 0, . . . ,4 at ε = 0.108 are
significant at the 5% confidence level or at least on the edge of significance.
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4. Conclusions

We have generalized the power-law ansatz for the level-repulsion function to higher-order
spacing distributions:rk(x) ∝ xqk . As an appropriate interpretation of the level-repulsion
function we have shown thatrk(x) dx is a conditional probability which corresponds to the
joint probability Pk(x) dx. We formulated a general differential equation forPk(x) which
depends onrk(x) only. Inserting the power-law ansatz into the solution of the differential
equation we arrived at a new type of spacing distributions,Qk(x). These distributions are
an adequate generalization of the Brody distribution to higher ordersk > 0. The comparison
with numerical spectra of two different Hamiltonian systems (the hydrogen atom in a mag-
netic field and the H́enon–Heiles system) confirmed the validity of the proposed distributions.
We also studied the level repulsion exponentsqk at constant scaled energy. In the different
ordersk of the neighbourhood statistics the exponents of the different orders are correlated
to each other. The exponents of the lower orders (smallk) approximately lie on a straight
line. It is generally accepted that local (short-range) properties of semiclassical quantum
spectra reveal universal features of the corresponding phase-space dynamics (see, e.g. Berry
1987). In our model the local properties are represented by level spacing distibutions of
lower orders. Therefore we expect that for somek the universal straight line behaviour of
the exponentsqk breaks down. Indeed, we found that fork > 5 the least-squares fits of
Qk(x) become worse and the best-fit exponents deviate from the straight line behaviour. It
is an interesting result of this paper that the short-range spacings (k 6 5) of mixed systems
effectively depend on one single parameter. The long-range correlations of energy levels
are dominated by nonuniversal features which depend on the specific form of the Hamilto-
nian under consideration. We have shown for two different systems that the energy level
distributionsQk(x) for k < 7 are significant at the 5% confidence level if the corresponding
classical phase space is chaotic (i.e.ε = −0.1 for the hydrogen atom in a magnetic field and
ε = 0.166 for the H́enon–Heiles system). Although a few of the other fits are not significant
at the 5% confidence level the correspondingχ2 values are comparatively small and the
overall agreement between the empirical spectra and our distibutions is astonishingly good.

The Brody distribution as well as our distributionsQk(x) lack a physical derivation from
first principles. Prosen and Robnik (1994) derived semiclassically the power-law behaviour
of the nearest-neighbour spacing distributionP0(x) for small spacingsx � 1 in the ‘near-
semiclassical regime’. However, the derivation of the global Brody-like behaviour is still
an open problem. We propose that such a derivation should exploit the simple power-law
structure of the level-repulsion functionrk(x).
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